Software Project Planning

The overall goal of project planning is to establish a pragmatic strategy for controlling, tracking, and monitoring a complex technical project.

Why?

So the end result gets done on time, with quality!

Project Planning Task Set-I

- Establish project scope
- Determine feasibility
- Analyze risks
 - Risk analysis is considered in detail in Chapter 25.
- Define required resources
 - Determine required human resources
 - Define reusable software resources
 - Identify environmental resources
Project Planning Task Set-II

- Estimate cost and effort
 - Decompose the problem
 - Develop two or more estimates using size, function points, process tasks or use-cases
 - Reconcile the estimates

- Develop a project schedule
 - Scheduling is considered in detail in Chapter 24.
 - Establish a meaningful task set
 - Define a task network
 - Use scheduling tools to develop a timeline chart
 - Define schedule tracking mechanisms

Estimation

- Estimation of resources, cost, and schedule for a software engineering effort requires
 - experience
 - access to good historical information (metrics)
 - the courage to commit to quantitative predictions when qualitative information is all that exists

- Estimation carries inherent risk and this risk leads to uncertainty

Write it Down!

Project Scope
Estimates
Risks
Schedule
Control strategy

Software Project Plan
To Understand Scope ...

- Understand the customers needs
- understand the business context
- understand the project boundaries
- understand the customer's motivation
- understand the likely paths for change
- understand that ...

Even when you understand, nothing is guaranteed!

What is Scope?

Software scope describes
- the functions and features that are to be delivered to end-users
- the data that are input and output
- the "content" that is presented to users as a consequence of using the software
- the performance, constraints, interfaces, and reliability that bound the system.

Scope is defined using one of two techniques:
- A narrative description of software scope is developed after communication with all stakeholders.
- A set of use-cases is developed by end-users.
Project Estimation

- Project scope must be understood
- Elaboration (decomposition) is necessary
- Historical metrics are very helpful
- At least two different techniques should be used
- Uncertainty is inherent in the process

Estimation Techniques

- Past (similar) project experience
- Conventional estimation techniques
 - task breakdown and effort estimates
 - size (e.g., FP) estimates
- Empirical models
- Automated tools

Estimation Accuracy

- Predicated on …
 - the degree to which the planner has properly estimated the size of the product to be built
 - the ability to translate the size estimate into human effort, calendar time, and dollars (a function of the availability of reliable software metrics from past projects)
 - the degree to which the project plan reflects the abilities of the software team
 - the stability of product requirements and the environment that supports the software engineering effort.
Functional Decomposition

Statement of Scope

Perform a Grammatical "parse"

Conventional Methods:
LOC/FP Approach

- compute LOC/FP using estimates of information domain values
- use historical data to build estimates for the project

Example: LOC Approach

Average productivity for systems of this type = 620 LOC/pm.
Burdened labor rate = $8000 per month, the cost per line of code is approximately $13.
Based on the LOC estimate and the historical productivity data, the total estimated project cost is $431,000 and the estimated effort is 54 person-months.
Example: FP Approach

The estimated number of FP is derived:

\[\text{FP}_{\text{estimated}} = \text{count-	ext{total}} \times (0.65 + 0.01 \times S(F_i)) \]
\[\text{FP}_{\text{estimated}} = 375 \]

Organizational average productivity = 6.5 FP/pm.

Burdened labor rate = $8000 per month, the cost per FP is approximately $1230.

Based on the FP estimate and the historical productivity data, the total estimated project cost is $461,000 and the estimated effort is 58 person-months.

Process-Based Estimation

Obtained from “process framework”

| Effort required to accomplish each framework activity for each application function |

<table>
<thead>
<tr>
<th>Application functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Process-Based Estimation Example

<table>
<thead>
<tr>
<th>Planning</th>
<th>Analysis</th>
<th>Design</th>
<th>Code</th>
<th>Test</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>3.50</td>
<td>20.50</td>
<td>4.50</td>
</tr>
<tr>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>8%</td>
<td>45%</td>
<td>10%</td>
</tr>
<tr>
<td>CC = customer communication</td>
<td>CE = customer evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on an average burdened labor rate of $8,000 per month, the total estimated project cost is $368,000 and the estimated effort is 46 person-months.
Tool-Based Estimation

- project characteristics
- calibration factors
- LOC/FP data

Estimation with Use-Cases

<table>
<thead>
<tr>
<th>Use cases</th>
<th>sc5enario pages</th>
<th>scenarios pages</th>
<th>LOC estimate</th>
<th>Total LOC estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface subsystem</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>3100</td>
</tr>
<tr>
<td>Engineering subsystem group</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>7,870</td>
</tr>
<tr>
<td>Infrastructure subsystem group</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1650</td>
</tr>
<tr>
<td>Total LOC estimate</td>
<td>E</td>
<td>C</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

Using 620LOC/pm as the average productivity for systems of this type and a burdened labor rate of 8800 per month, the cost per line of code is approximately 13. Based on the use-case estimate and the historical productivity data, the total estimated project cost is $552,000$ and the estimated effort is 68 person-months.

Empirical Estimation Models

General form:

\[\text{effort} = \text{tuning coefficient} \times \text{size} \times \text{exponent} \]

- usually derived as person-months of effort required
- empirically derived, either a constant or a number derived based on complexity of project
- usually LOC but may also be function points
COCOMO-II

- COCOMO II is actually a hierarchy of estimation models that address the following areas:
 - Application composition model: Used during the early stages of software engineering, when prototyping of user interfaces, consideration of software and system interaction, assessment of performance, and evaluation of technology maturity are paramount.
 - Early design stage model: Used once requirements have been stabilized and basic software architecture has been established.
 - Post-architecture-stage model: Used during the construction of the software.

The Software Equation

A dynamic multivariable model

\[
E = [LOC \times B^{0.333}/P]^3 \times (1/t^4)
\]

where

- \(E\) = effort in person-months or person-years
- \(t\) = project duration in months or years
- \(B\) = “special skills factor”
- \(P\) = “productivity parameter”

Estimation for OO Projects-I

- Develop estimates using effort decomposition, FP analysis, and any other method that is applicable for conventional applications.
- Using object-oriented analysis modeling (Chapter 8), develop use-cases and determine a count.
- From the analysis model, determine the number of key classes (called analysis classes in Chapter 8).
- Categorize the type of interface for the application and develop a multiplier for support classes:
 - Interface type
 - No GUI: 2.0
 - Text-based user interface: 2.25
 - GUI: 2.5
 - Complex GUI: 3.0
Estimation for OO Projects-II

- Multiply the number of key classes (step 3) by the multiplier to obtain an estimate for the number of support classes.
- Multiply the total number of classes (key + support) by the average number of work-units per class. Lorenz and Kidd suggest 15 to 20 person-days per class.
- Cross check the class-based estimate by multiplying the average number of work-units per use-case

Estimation for Agile Projects

- Each user scenario (a mini-use-case) is considered separately for estimation purposes.
- The scenario is decomposed into the set of software engineering tasks that will be required to develop it.
- Each task is estimated separately. Note: estimation can be based on historical data, an empirical model, or “experience.”
 - Alternatively, the ‘volume’ of the scenario can be estimated in LOC, FP or some other volume-oriented measure (e.g., use-case count).
 - Estimates for each task are summed to create an estimate for the scenario.
 - Alternatively, the volume estimate for the scenario is translated into effort using historical data.
- The effort estimates for all scenarios that are to be implemented for a given software increment are summed to develop the effort estimate for the increment.

The Make-Buy Decision

- Build
 - Major changes (0.30)
 - Minor changes (0.70)
- Buy
 - Contract without changes (0.60)
 - Contract with changes (0.40)
- System X
 - Simple (0.20)
 - Complex (0.80)
Computing Expected Cost

\[\text{expected cost} = \sum (\text{path probability})_i \times (\text{estimated path cost})_i \]

For example, the expected cost to build is:

\[\text{expected cost}_{\text{build}} = 0.30 \times \$380K + 0.70 \times \$450K = \$429K \]

Similarly,

\[\text{expected cost}_{\text{bus}} = \]
\[\text{expected cost}_{\text{dehyde}} = \]
\[\text{expected cost}_{\text{cont}} = \$410K \]