Why Architecture?

The architecture is not the operational software. Rather, it is a representation that enables a software engineer to:

1. analyze the effectiveness of the design in meeting its stated requirements,
2. consider architectural alternatives at a stage when making design changes is still relatively easy, and
3. reduce the risks associated with the construction of the software.

Why is Architecture Important?

- Representations of software architecture are an enabler for communication between all parties (stakeholders) interested in the development of a computer-based system.
- The architecture highlights early design decisions that will have a profound impact on all software engineering work that follows and, as important, on the ultimate success of the system as an operational entity.
- Architecture "constitutes a relatively small, intellectually graspable model of how the system is structured and how its components work together" [BAS03].
Data Design—Component Level

1. The systematic analysis principles applied to function and behavior should also be applied to data.
2. All data structures and the operations to be performed on each should be identified.
3. A data dictionary should be established and used to define both data and program design.
4. Low level data design decisions should be deferred until late in the design process.
5. The representation of data structure should be known only to those modules that must make direct use of the data contained within the structure.
6. A library of useful data structures and the operations that may be applied to them should be developed.
7. A software design and programming language should support the specification and realization of abstract data types.

Architectural Styles

Each style describes a system category that encompasses: (1) a set of components (e.g., a database, computational modules) that perform a function required by a system, (2) a set of connectors that enable "communication, coordination and cooperation" among components, (3) constraints that define how components can be integrated to form the system, and (4) semantic models that enable a designer to understand the overall properties of a system by analyzing the known properties of its constituent parts.

- Data-centered architectures
- Data flow architectures
- Call and return architectures
- Object-oriented architectures
- Layered architectures

Data-Centered Architecture
Architectural Patterns

- Concurrency—applications must handle multiple tasks in a manner that simulates parallelism
 - operating system process management pattern
 - task scheduler pattern
- Persistence—data persists if it survives past the execution of the process that created it. Two patterns are common:
 - a database management system pattern that applies the storage and retrieval capability of a DBMS to the application architecture
 - an application level persistence pattern that builds persistence features into the application architecture
- Distribution—the manner in which systems or components within systems communicate with one another in a distributed environment
 - A broker acts as a 'middle-man' between the client component and a server component.

Architectural Design

- The software must be placed into context
 - the design should define the external entities (other systems, devices, people) that the software interacts with and the nature of the interaction
- A set of architectural archetypes should be identified
 - An archetype is an abstraction (similar to a class) that represents one element of system behavior
- The designer specifies the structure of the system by defining and refining software components that implement each archetype

Architectural Context
Archetypes

Component Structure

Refined Component Structure
Analyzing Architectural Design

1. Collect scenarios.
2. Elicit requirements, constraints, and environment description.
3. Describe the architectural styles/patterns that have been chosen to address the scenarios and requirements:
 - module view
 - process view
 - data flow view
4. Evaluate quality attributes by considered each attribute in isolation.
5. Identify the sensitivity of quality attributes to various architectural attributes for a specific architectural style.
6. Critique candidate architectures (developed in step 3) using the sensitivity analysis conducted in step 5.

An Architectural Design Method

customer requirements

"four bedrooms, three baths, lots of glass ..."

architectural design

Deriving Program Architecture

Program Architecture
Partitioning the Architecture

- “horizontal” and “vertical” partitioning are required

Horizontal Partitioning

- define separate branches of the module hierarchy for each major function
- use control modules to coordinate communication between functions

Vertical Partitioning: Factoring

- design so that decision making and work are stratified
- decision making modules should reside at the top of the architecture
Why Partitioned Architecture?

- results in software that is easier to test
- leads to software that is easier to maintain
- results in propagation of fewer side effects
- results in software that is easier to extend

Structured Design

- objective: to derive a program architecture that is partitioned
- approach:
 - the DFD is mapped into a program architecture
 - the PSPEC and STD are used to indicate the content of each module
- notation: structure chart

Flow Characteristics

- Transform flow
- Transaction flow
General Mapping Approach

- Isolate incoming and outgoing flow boundaries; for transaction flows, isolate the transaction center.
- Working from the boundary outward, map DFD transforms into corresponding modules.
- Add control modules as required.
- Refine the resultant program structure using effective modularity concepts.

Transform Mapping

```
  a  b  c  d  e  f  g  h  
  i  j  x1  x2  x3  x4  
  b  c  a  de  fgi  h  j  
```

Factoring

- Direction of increasing decision making.
- Typical "decision making" modules.
- Typical "worker" modules.
First Level Factoring

- main program controller
- input controller
- processing controller
- output controller

Second Level Mapping

Mapping from the flow boundary outward

Transaction Flow

Incoming flow

Action path
Transaction Example

![Diagram of operator commands and fixture settings](image)

In reality, other commands would also be shown.

Refining the Analysis Model

1. Write an English language processing narrative for the level 01 flow model.
2. Apply noun-verb parse to isolate processes, data items, stores and entities.
3. Develop level 02 and 03 flow models.
4. Create corresponding data dictionary entries.
5. Refine flow models as appropriate.

...now, we’re ready to begin design!

Deriving Level 1

Processing narrative for “process operator commands”

Process operator command software reads operator commands from the cell operator. An error message is displayed for invalid commands. The command type is determined for valid commands and appropriate action is taken. When fixture commands are encountered, fixture status is analyzed and a fixture setting is output to the fixture servos. When a report is selected, the assembly record file is read and a report is generated and displayed on the operator display screen. When a report is selected, a report is generated and displayed on the operator display screen.

When robot control switches are selected, control values are sent to the robot control system.
Level 1 Data Flow Diagram

Level 2 Data Flow Diagram

Transaction Mapping Principles

- isolate the incoming flow path
- define each of the action paths by looking for the "spokes of the wheel"
- assess the flow on each action path
- define the dispatch and control structure
- map each action path flow individually
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner's Approach, 6/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005.

Transaction Mapping

- Data flow model
- Mapping

Isolate Flow Paths

- Read command
- Validate command
- Produce error message
- Include value controller
- Report generation controller
- Send control value

Map the Flow Model

- Each of the action paths must be expanded further
Refining the Structure Chart

process operator commands

command input controller

read command validate command produce error message failure status computer report generation controller send control value

read fixture status determine setting format setting read record calculate output values format report