Electronic-Cash: Protocols and Applications

By Da Wang

Overview

- Current Payment Systems
- Properties of E-cash
- Securing E-Cash
- An Introduction to Electronic Payment Systems
- Different Protocols
 - First Virtual
 - SET
 - DigiCash
 - NetBill
 - Others

Current Payment Systems

- Cash (physical)
- Checks
- Credit cards
- Electronic-cash (also known as e-money or digital cash)
What’s E-cash?
- Term that describes any value storage and exchange system created by a private entity that
 - Does not use paper documents or coins
 - Can serve as a substitute for government-issued physical currency

Why E-cash?
- Save time:
 - Post checks from Seattle to Morgantown → 3 days
 - Electronic transaction from Bank of China in Shanghai to BB&T in Morgantown → 1 day
- Reduce costs:
 - Electronic systems are cheaper to operate. The costs per transaction shown here include all those incurred by banks, retailers, and others forming the links in the transaction chain.

Processing cost per transaction

<table>
<thead>
<tr>
<th></th>
<th>Paper</th>
<th>Electronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td></td>
<td>$1.00</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td>$0.80</td>
</tr>
<tr>
<td>Credit card</td>
<td></td>
<td>$0.60</td>
</tr>
<tr>
<td>Debit card</td>
<td></td>
<td>$0.40</td>
</tr>
<tr>
<td>E-cash</td>
<td></td>
<td>$0.20</td>
</tr>
</tbody>
</table>

Source: Thielbauer Consulting Group
Securing E-Cash

- Secure Web Sessions
 - Secure Sockets Layer (SSL)
 - Secure-HTTP (S-HTTP)
- Cryptography of E-cash
 - Public-key encryption
 - Digital signatures

Protocol Stack for Internet Communications

<table>
<thead>
<tr>
<th>Payment Protocols (SET, CyberCash, First Virtual, …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-HTTP</td>
</tr>
</tbody>
</table>

Secure Sockets Layer

- SSL was designed and implemented by Netscape Communications.
- SSL 3.0 becomes a de facto standard for cryptographic protection of Web traffic.
- SSL relies on the existence of a key certification mechanism for the authentication of the server (Web site) and the client (Web browser)
Secure-HTTP

- S-HTTP was designed by E. Rescorla and A. Schiffman of EIT (Enterprise Integration Technologies) to secure HTTP connections.
- S-HTTP does not rely on a particular key certification scheme. It includes support for RSA, in-band, out-of-band and kerberos key exchange.
- S-HTTP defines a specific security negotiation header.

Electronic Payment System Types

- Stored-account system:
 - First Virtual Internet Payment System
 - CyberCash’s Secure Internet Payment System
 - Secure Electronic Transaction (SET)
- Stored-value system:
 - DigiCash’s e-cash
 - NetBill
 - Mondex
 - CAFÉ

First Virtual Internet Payment System

- First Virtual (FV) implemented and deployed one of the first Internet commercial payment systems, First Virtual Internet Payment System, in October of 1994.
- First Virtual does not use cryptography or a secure means of communicating.
- First Virtual is based on an exchange of e-mail messages.
First Virtual (FV) serves as a broker to credit card transactions between consumers and merchants.

1. Consumer establishes an account with FV, and the account is secured with a credit card.
2. Consumer is assigned a VirtualPIN.
3. Consumer applies an order by e-mailing a participating FV merchant.
4. The merchant requests the consumer’s VirtualPIN and checks whether it is valid.
5. The merchant initiates a payment transaction by sending e-mail to FV.
6. FV contacts the purchaser by e-mail to confirm the purchase.

7. Consumer confirms sale by sending a YES response back to FV.
8. FV sends a transaction result message to the merchant, indicating whether the buyer accepted the charges.
9. After a waiting period (91 days after buyer’s credit card has been charged), the amount of the sale minus transaction fees are directly deposited into the merchant’s account.

Merchant assumes all risk!

Pros and Cons

Advantages:
- The protocol is simple.
- Neither buyer nor seller needs to install any software in order to use the system.
- First Virtual has very low processing fees compared to other Internet payment schemes or even straight credit card processing.

Disadvantages:
- Merchant assumes all risk!
- The content of the Web Session or e-mail may be captured and interpreted by network sniffers.
Secure Electronic Transaction

- Secure Electronic Transaction (SET) is an emerging standard for secure credit card payments over the Internet.

SET Transaction Steps

1. Request transaction
2. Acknowledge request
3. Purchase order
4. Purchase order verification
5. Customer payment data
6. Verify customer data
7. Status query
8. Purchase status information
9. Request payment
10. Verify payment

DigiCash’s E-Cash

- Digital Payment System E-Cash (DigiCash for short) was invented by David Chaum in 1993.
- DigiCash is a stored-value cryptographic coin system that facilitates Internet-based commerce using software that runs on personal computers.
- The value of DigiCash is represented by cryptographic tokens that can be withdrawn from bank accounts, deposited in bank accounts, or transferred to another people.
Unique Property

- DigiCash is unique in its implementation of electronic cash because it has attempted to preserve the anonymity and un-traceability associated with cash transactions.
 - DigiCash uses "Blind Signatures" for untraceable payments.

DigiCash Payment Protocol 1

- The DigiCash payment protocol and blinding can be illustrated by pictures:

 Step 1: verify identity, integrity
 Step 2: add $20 to Alice's account
 Step 3: sign with key
 Step 4: generate random serial #
 Multiply by blinding factor
 Digitally sign request

 DigiCash e-cash withdrawal

DigiCash Payment Protocol 2

- Spending e-cash
Pros and Cons

Advantages:
- It allows realization of untraceable payments system which offers increased personal privacy.

Disadvantages:
- Traceability of transactions may be lowered, resulting in a higher potential for undetected fraud.

NetBill

- NetBill is a system for micropayments for information goods on the internet, which is developed by J.D. Tygar, Benjamin Cox, and Marvin Sirbu of Carnegie Mellon University.
- Micropayment system: NetBill acts as an aggregator to combine many small transactions into larger conventional transactions, amortizing conventional overhead fees.

Transaction Model

- Parties participating in a NetBill Transaction:
 - Customer
 - Merchant
 - NetBill
- NetBill account can be replenished from a bank or credit card.
NetBill Protocol 1

- A) Customer requests price from merchant
- B) Merchant makes offer to customer
- C) Customer tells merchant “I accept offer”
- D) Merchant sends goods to customer encrypted with key K
- E) Customer sends signed Electronic Purchase Order (EPO) to merchant
- F) Merchant countersigns EPO, signs K, sends both to NetBill server

NetBill Protocol 2

- G) NetBill server commits transaction
 - Verify signatures & makes sure cust. has enough $
 - Make sure customer’s time-out has not expired
 - If all OK, transfers funds from customer to merchant
 - Stores K and checksum of goods
 - Sends signed receipt to merchant
- H) Merchant forwards receipt to customer
- I) Customer now has K and can decrypt goods

Limitation

- It’s only used for the information goods on the internet.
- You can’t use this protocol to buy a Car.
Other Protocols

- iKP provides secure transactions for credit card payments using the existing financial infrastructure for approvals and clearing.
- Millicent is a lightweight protocol suitable for micropayments.
- Netcash provides a real-time electronic payment scheme with provisions for secure anonymous exchanges over an insecure network.
- Smart Card, such as prepaid telephone card.

Questions?