Advanced Analysis of Algorithms - Homework III

K. Subramani
LCSEE,
West Virginia University,
Morgantown, WV
{ksmani@csee.wvu.edu}

1 Instructions

1. The homework is due on November 17, in class. Each question is worth 4 points.
2. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems

1. Is there a problem in the complexity class \(P \), such that all problems in \(P \) can be polynomially transformed to this problem?
2. Show that a language \(L \) can be verified in deterministic polynomial time if and only if it can be decided by a non-deterministic algorithm in polynomial time.
3. Design a backtracking algorithm for the 3SAT problem.
4. Consider an instance of the Subset-Sum problem, where \(S = \{2, 10, 13, 17, 22, 42\} \) and \(B = 52 \). Solve this instance using backtracking, showing all the steps.
5. Consider the following graph coloring algorithm for coloring the vertices of a graph using the fewest number of colors:

 Function FIND-OPTIMAL-COLOR(\(G=<V,E> \))

 1: Let \(V_{un} = V \) and \(C_u = \{1, 2, \ldots, n\} \).
 2: while \(V_{un} \neq \emptyset \) do
 3: \(c_{cur} \) is the smallest indexed color in \(C \).
 4: Assign \(c_{cur} \) to as many vertices as possible in \(V_{un} \) making sure that a vertex with index number \(k \) is considered before a vertex with index number \(k + 1 \).
 5: Delete all the colored vertices from \(V_{un} \).
 6: Delete \(c_{cur} \) from \(C \).
 7: end while

 Algorithm 2.1: Graph Coloring Algorithm

 \(V_{un} \) is the set of uncolored vertices and \(C_u \) is the set of unassigned colors.

 Is Algorithm (2.1) optimal? Justify your answer with a proof or a counterexample.