1 Instructions

1. The final is to be turned in by 5 p.m., December 14.

2. Each question is worth 4 points.

3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

4. The solutions will be posted on the class URL.

2 Problems

1. Diagonalization: The Halting problem is defined as follows: Given a Turing Machine \(M = \langle Q, \{0, 1\}, \Gamma, \delta, q_0, \Box, F \rangle \) and a string \(w \in \Sigma^* \), determine whether \(M \) halts on \(w \). In class, we proved that the Halting problem is undecidable using two different techniques. The first technique was constructive, where we constructed a series of Turing Machines, which led to a contradiction. The second technique was based on the observation that if the Halting problem is decidable then all recursively enumerable languages would become recursive. In this question, I am asking you to prove that the Halting problem is undecidable using diagonalization.

 Hint: Recall that the set of Turing Machines is countable and construct the table of Turing Machines presented with Turing Machines.

2. Countability:

 (a) The set \(N = \{1, 2, 3, \ldots\} \) is known to be a countable set. Is the set \(N \times N \) countable? (2 points.)

 (b) Let \(I = (0, 1) \) and let \(\mathbb{R}^+ = (0, \infty) \). Which set has more elements? (2 points.)

3. Language Theory: In class we laboriously argued that the concept of undecidability did not apply to problems which are characterized by a single instance. Let us say that a problem \(P \) has three instances. Can such a problem be undecidable?

4. Undecidability: The Total-Halting problem is defined as follows: Given a Turing Machine \(M = \langle Q, \Sigma, \Gamma, \delta, q_0, \Box, F \rangle \), determine whether \(M \) halt on all inputs \(w \in \Sigma^* \). Is the Total-Halting Problem decidable?

5. Properties of Regular Languages: Let \(L_1 \) and \(L_2 \) denote two languages over an alphabet \(\Sigma \). We define \(\text{cor}(L_1, L_2) \) as follows:

\[
\text{cor}(L_1, L_2) = \{ w \in \Sigma^* : w \in L_1^c \text{ or } w \in L_2^c \}
\]

where \(L^c \) denotes the complement of language \(L \). Show that \(\text{cor}(L_1, L_2) \) is regular, if \(L_1 \) and \(L_2 \) are regular.