First Order Theories - The Theory of Equality

K. Subramani

1 Lane Department of Computer Science and Electrical Engineering
West Virginia University

22 February 2013
1 Equality
It is the simplest first-order theory.
Basics

It is the simplest first-order theory. Its signature is:

$$\Sigma_E = \{=, a, b, c, \ldots, f, g, h, \ldots p, q, r, \ldots\}.$$
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:
\[\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots p, q, r, \ldots \} \].

What is the meaning of equality (\(= \))?
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:
\[\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots p, q, r, \ldots \} \].

What is the meaning of equality (=)?

It has the following axiom set:
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:
\[\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots \} \].

What is the meaning of equality (=)?

It has the following axiom set:
\[(\forall 1.) \ (\forall x) \ x = x. \]
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:

\[\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots p, q, r, \ldots \} \]

What is the meaning of equality (\(=\))?

It has the following axiom set:

(A1.) \((\forall x)\ x = x\).

(A2.) \((\forall x)(\forall y)\ (x = y) \rightarrow (y = x)\).
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:
\[\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots p, q, r, \ldots \} \).

What is the meaning of equality (\(= \))?

It has the following axiom set:

\. (A1.) (\(\forall x \)) \(x = x \).
\. (A2.) (\(\forall x)(\forall y \)) (\(x = y \)) \(\rightarrow \) (\(y = x \)).
\. (A3.) (\(\forall x)(\forall y)(\forall z \)) (\(x = y \)) \(\land \) (\(y = z \)) \(\rightarrow \) (\(x = z \)).
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:
$$\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots p, q, r, \ldots \}.$$ What is the meaning of equality ($=$)?

It has the following axiom set:

(A1.) $$(\forall x) \ x = x.$$
(A2.) $$(\forall x)(\forall y) \ (x = y) \rightarrow (y = x).$$
(A3.) $$(\forall x)(\forall y)(\forall z) \ (x = y) \land (y = z) \rightarrow (x = z).$$
(A4.) $$(\forall \overline{x})(\forall \overline{y}) \ (\land_{i=1}^{n} (x_i = y_i)) \rightarrow [f(\overline{x}) = f(\overline{y})].$$
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:
\[\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots \} \].

What is the meaning of equality (\(=\))?

It has the following axiom set:

(A1.) \((\forall x) \, x = x\).
(A2.) \((\forall x)(\forall y) \, (x = y) \rightarrow (y = x)\).
(A3.) \((\forall x)(\forall y)(\forall z) \, (x = y) \land (y = z) \rightarrow (x = z)\).
(A4.) \((\forall \vec{x})(\forall \vec{y}) \, (\land_{i=1}^{n} (x_i = y_i)) \rightarrow [f(\vec{x}) = f(\vec{y})]\).
(A5.) \((\forall \vec{x})(\forall \vec{y}) \, (\land_{i=1}^{n} (x_i = y_i)) \rightarrow [p(\vec{x}) = p(\vec{y})]\).

In (A4.) and (A5.), \(\vec{x} = (x_1, x_2, \ldots x_n)\), and \(\vec{y} = (y_1, y_2, \ldots y_n)\).
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:
\[\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots p, q, r, \ldots \}. \]
What is the meaning of equality (=)?

It has the following axiom set:

(A1.) \[(\forall x) \ x = x.\]

(A2.) \[(\forall x)(\forall y) \ (x = y) \rightarrow (y = x).\]

(A3.) \[(\forall x)(\forall y)(\forall z) \ (x = y) \land (y = z) \rightarrow (x = z).\]

(A4.) \[(\forall \overline{x})(\forall \overline{y}) \ (\land_{i=1}^{n} (x_i = y_i)) \rightarrow [f(\overline{x}) = f(\overline{y})].\]

(A5.) \[(\forall \overline{x})(\forall \overline{y}) \ (\land_{i=1}^{n} (x_i = y_i)) \rightarrow [p(\overline{x}) = p(\overline{y})].\]

In (A4.) and (A5.), \(\overline{x} = (x_1, x_2, \ldots x_n) \), and \(\overline{y} = (y_1, y_2, \ldots y_n) \).

Note
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:
\[\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots p, q, r, \ldots \} \]

What is the meaning of equality (=)?

It has the following axiom set:

(A1.) \((\forall x)\ x = x.\)

(A2.) \((\forall x)(\forall y)\ (x = y) \rightarrow (y = x).\)

(A3.) \((\forall x)(\forall y)(\forall z)\ (x = y) \land (y = z) \rightarrow (x = z).\)

(A4.) \((\forall \bar{x})(\forall \bar{y})\ (\bigwedge_{i=1}^{n} (x_i = y_i)) \rightarrow [f(\bar{x}) = f(\bar{y})].\)

(A5.) \((\forall \bar{x})(\forall \bar{y})\ (\bigwedge_{i=1}^{n} (x_i = y_i)) \rightarrow [p(\bar{x}) = p(\bar{y})].\)

In (A4.) and (A5.), \(\bar{x} = (x_1, x_2, \ldots x_n),\) and \(\bar{y} = (y_1, y_2, \ldots y_n).\)

Note

(i) A **axiom schema** stands for a set of axioms, each an instantiation of the parameters.
The Theory of Equality

Basics

It is the simplest first-order theory. Its signature is:
\[\Sigma_E = \{ =, a, b, c, \ldots, f, g, h, \ldots p, q, r, \ldots \}. \]

What is the meaning of equality (=)?

It has the following axiom set:

(A1.) \((\forall x)\; x = x.\)

(A2.) \((\forall x)(\forall y)\; (x = y) \rightarrow (y = x).\)

(A3.) \((\forall x)(\forall y)(\forall z)\; (x = y) \land (y = z) \rightarrow (x = z).\)

(A4.) \((\forall \overline{x})(\forall \overline{y})\; (\land_{i=1}^n (x_i = y_i)) \rightarrow [f(\overline{x}) = f(\overline{y})].\)

(A5.) \((\forall \overline{x})(\forall \overline{y})\; (\land_{i=1}^n (x_i = y_i)) \rightarrow [p(\overline{x}) = p(\overline{y})].\)

In (A4.) and (A5.), \(\overline{x} = (x_1, x_2, \ldots x_n),\) and \(\overline{y} = (y_1, y_2, \ldots y_n).\)

Note

(i) A axiom schema stands for a set of axioms, each an instantiation of the parameters.

(ii) The theory of equality is undecidable.
Equality

Example

Subramani

First Order Theories
Example

Is the formula $F : (a = b) \land (b = c) \rightarrow g(f(a), b) = g(f(c), a)$ valid?