Binary Image Processing

- Introduction
- Set theory review
- Morphological filtering
 - Erosion and dilation
 - Opening and closing
 - Hit-or-miss, boundary extraction, ...
- Skeleton via distance transform

Binary Images

- Images only consist of two colors (tones): white or black

Numerical example (image of a square block)

```
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 255 255 255 255 0 0 0
0 0 255 255 255 255 0 0 0
0 0 255 255 255 255 0 0 0
0 0 255 255 255 255 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
```
Binary Image Examples

| Phil |

Why are binary images special?

- Since pixels are either white or black, the locations of white(black) pixels carry ALL information of binary images

Example

<table>
<thead>
<tr>
<th>0 0 0 0</th>
<th>0 0 255 255</th>
<th>0 0 255 255</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(m,n)</td>
<td>L={(3,3),(3,4),(4,3),(4,4)}</td>
<td>location of white pixels</td>
</tr>
</tbody>
</table>

It is often more convenient to consider the set representation than the matrix representation for binary images
Binary Image Processing

- Introduction
- Set theory review
- Morphological filtering
 - Erosion and dilation
 - Opening and closing
 - Hit-or-miss, boundary extraction, …
- Skeleton via distance transform

Set Theory Review

Think of sets A and B as the collections of spatial coordinates.
Translation Operator

\[(A)_z = \{w \mid w = a + z, a \in A\}\]

Example

Reflection Operator

\[\hat{B} = \{w \mid w = -b, b \in B\}\]

Example
Binary Image Processing

- Introduction
- Set theory review
- Morphological filtering
 - Erosion and dilation
 - Opening and closing
 - Hit-or-miss, boundary extraction, …
- Skeleton via distance transform

Structuring Element B

Definition: a set of local neighborhood with specified origin

Examples

\[
\begin{align*}
 B_1 & : & \begin{array}{c}
 \circ \circ \circ \\
 \circ \circ \circ \\
 \circ \circ \circ \\
 \end{array} \\
 B_2 & : & \begin{array}{c}
 \circ \circ \circ \\
 \circ \circ \circ \\
 \circ \circ \circ \\
 \end{array}
\end{align*}
\]

Note: different structuring element leads to different filtering result
Erosion

Definition

\[Y = X \ominus B = \{ x : B_x \subset X \} \]

Example

![Erosion Example Diagram](image)

Dilation

Definition

\[Y = X \oplus B = \{ z | (\hat{B})_z \cap X \neq \emptyset \} \]

or

\[Y = X \oplus B = \bigcup_{b \in B} X_b = \bigcup_{x \in X} B_x = B \oplus X \]

Example

![Dilation Example Diagram](image)
Theorem

\[(X \ominus B)^c = X^c \oplus \mathring{B}\]

Proof:

\[(X \ominus B)^c = \{z \mid B \subseteq A\}^c\]

\[= \{z \mid B \cap A^c = \emptyset\}^c\]

\[= \{z \mid B \cap A^c \neq \emptyset\}\]

\[= X^c \oplus \mathring{B}\]
Opening Operator

Definition

\[X \circ B = (X \ominus B) \oplus B \]

Example

- \(X \)
- \(X \circ B \)
- Mask \(B \)

Geometric Interpretation of Opening Operator

- Translates of \(B \) in \(A \)
- \(A \circ B = \cup \{(B)_t : (B)_t \subseteq A\} \)
Closing Operator

Definition

\[X \bullet B = (X \oplus B) \ominus B \]

Example

- **X**
 - ![X Image](image1)
- **X \bullet B**
 - ![X*B Image](image2)

Geometric Interpretation of Closing Operator

- ![Geometric Image](image3)
Properties of Opening and Closing Operators*

Opening
- $X \circ B \subseteq X$
- $X \subseteq Y \Rightarrow X \circ B \subseteq Y \circ B$
- $(X \circ B) \circ B = X \circ B$

Closing
- $X \subseteq X \bullet B$
- $X \subseteq Y \Rightarrow X \bullet B \subseteq Y \bullet B$
- $(X \bullet B) \bullet B = X \bullet B$

Hit-or-Miss Operator

Definition

$X \bullet B = (X \ominus B_1) \cap (X^c \ominus B_2)$

Structuring element example

<table>
<thead>
<tr>
<th>Mask B_1</th>
<th>Mask B_2</th>
<th>Mask B</th>
<th>MATLAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -1 -1</td>
<td>1 1 -1</td>
<td>0 1 0</td>
<td>bwhitmiss</td>
</tr>
</tbody>
</table>

(MATLAB function: bwhitmiss)
Example

\[X \quad X' \quad X \ominus B_1 \quad X' \ominus B_2 \]

- \(X \)
- \(X' \)
- \(X \ominus B_1 \)
- \(X' \ominus B_2 \)

- **Boundary Extraction Operator**

Definition

\[\partial X = X - (X \ominus B) \]

Example

\[
\begin{array}{c}
\uparrow \\
X \\
\downarrow \\
X \ominus B \\
\downarrow \\
X - (X \ominus B) \\
\end{array}
\]

MATLAB function: `bwmorph(…,'remove')`
Image Example

Region Filling Operator*

Idea: recursively expand the region around P but stop the expansion at the boundary of X

Iterations:

- $Y_0 = P$
- $Y_k = (Y_{k-1} \oplus B) \cap X^c$, $k=1,2,3\ldots$

Terminate when $Y_k = Y_{k-1}$, output $Y_k \cup X$
Image Example

![Image Example Diagram]

Additional Example

![Additional Example Diagram]
Binary Image Processing

- Introduction
- Set theory review
- Morphological filtering
 - Erosion and dilation
 - Opening and closing
 - Hit-or-miss, boundary extraction, ...
- Skeleton via distance transform

Medial Axis (Skeleton)

- Definition
 Suppose that a fire line propagates with constant speed from the contour of a connected object towards its inside, then all those points lying in positions where at least two wave fronts of the fire line meet during the propagation will constitute a form of a skeleton

- Examples
Skeleton Algorithm

- Distance transform: find the distance from the nearest boundary for each point
 - initialization \(x_0(m,n) = x(m,n) \)
 - iteration \(x_k(m,n) = x_k(m,n) + \min \{ x_{k-1}(i,j) : d(m,n;i,j) \leq 1 \} \)

- Skeleton is the set of points whose distance from the nearest boundary is locally maximum
 \(\{(m,n) : x_k(m,n) \geq x_k(i,j), d(m,n;i,j) \leq 1 \} \)

Numerical Example

\[
\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 1 & 2 & 3 \\
1 & 2 & 2 & 2 & 1 & 2 & 2 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
x_0(m,n) \quad x_1(m,n) \quad x_3(m,n) \quad \text{skeleton}
\]

\[
x_0(m,n) \quad x_1(m,n) \quad x_3(m,n) \quad \text{local maximum}
\]
Image Example

original skeleton

MATLAB code: `y=bwmorph(x,'skel',inf);`

Image Example (Con’t)

Binaried fingerprint image Skeleton image